If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-64x+208=0
a = 1; b = -64; c = +208;
Δ = b2-4ac
Δ = -642-4·1·208
Δ = 3264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3264}=\sqrt{64*51}=\sqrt{64}*\sqrt{51}=8\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{51}}{2*1}=\frac{64-8\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{51}}{2*1}=\frac{64+8\sqrt{51}}{2} $
| -2/x=3/15 | | 90=6*m | | x+(2x+5)+(2x-20)=180 | | 31=25+y | | 38=32+y | | -5=-5w | | 4=5(p+2) | | -9x-2x=33 | | 3m+4=2m-9 | | 24/36=40/x | | 4(x+3)=49 | | 24/36=32/x | | 30000=25x-10 | | 10=4+(y)/(15.36) | | 8p-6=9p+15 | | 7(p-7)=30 | | 5t2-12t+81=0 | | 2y-7=5y+3 | | x/8+x/5=2 | | 14+24-x=30 | | V*2+4v+3=0 | | 2x/5=25 | | Y=-0.76x(15)+26.04 | | x²+8x-33=00 | | x²+8x-33=0 | | (5x+50)+40=300 | | 5(2n+5)=35 | | 5y-7=9y-29 | | 2x+x+x+10=70 | | 9x=145 | | 2x-20+x-10+x=70 | | 5x+8=69 |